

Muon Acceleration

J. Scott Berg
Physics Department
Brookhaven National Laboratory

Muon Accelerator Program Review Fermilab, August 24–26, 2010

Muon Acceleration Goals & Parameters

	v factory	μ collider
p_i (MeV/c)	220	?
p_f (GeV/ c)	25	750
$arepsilon_{n\perp}$ (μ m)	6000	25
$arepsilon_{n\parallel}$ (mm)	25	70
Repetition rate	50	15
Trains/pulse	3	1
Muons/train	4×10^{11}	2×10^{12}
Bunches/train	≈ 23	1

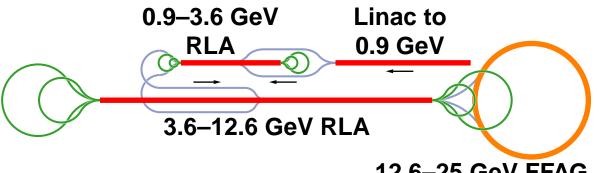
Primary Design Goal Hardware Efficiency

- Linac to 750 GeV would be expensive
 - □ Much (all for v factory) would be low frequency
- Re-use RF systems: multiple passes
 - Cost inversely proportional to passes
- Arcs needed to return beam to RF
 - Cost depends on type of system
- Use different types of accelerators for different energies
 - Choose most efficient type
 - More efficient types won't work (or will be less efficient) at lower energies

Types of Accelerators

- Linac: single pass
 - Other systems won't work at lowest energies
- Recirculating linear accelerator
 - Separate arc for each pass (different energies)
 - Number of passes limited
 - Switchyard complexity, beam overlaps between passes
 - Matching linac to every energy
 - Most conventional system for multiple passes

Types of Accelerators


- Ramped synchrotron
 - Ramp magnet fields with beam momentum
 - Rapid acceleration (avoid decays): fast ramping
 - Will only work at highest energies
 - Arbitrary number of passes: efficient
- Fixed Field Alternating Gradient (FFAG)
 - Single arc for full energy range
 - Avoids switchyard from RLA: more passes
 - Large aperture: expensive
 - Fixed fields: avoid ramping
 - Usable at lower energies
 - Inefficient at very low energies

Neutrino Factory

- Well-defined acceleration scenario
 - Linac to 0.9 GeV: RLA won't work at lower energies
 - Velocity variation in linac
 - Energy spread and beam size at switchyard
 - □ Two 4.5-pass "dogbone" RLAs to 3.6 and 12.6 GeV
 - □ FFAG to 25 GeV: 12.5 turns
 - Less efficient at lower energies
 - Large transverse emittance creates difficulties

12.6-25 GeV FFAG

Neutrino Factory R&D Goals

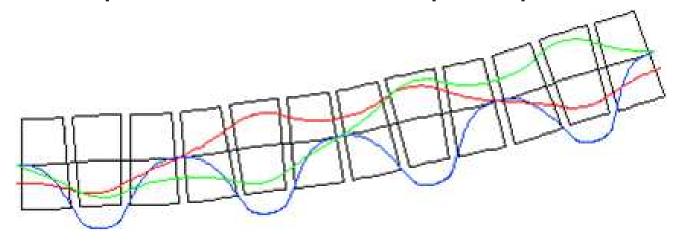
- Finalize injection/extraction design for FFAG
 - Kickers and septa very challenging
 - May affect final FFAG lattice parameters
- Full system simulation with realistic magnet fields
- Verify that FFAG is more cost-effective than RLA
 - Rough relative costing, from scaling up RLA design
- High gradient in 200 MHz superconducting RF

Muon Collider Power Efficiency

- 7 MW of muon beam power at end
- Power efficiency

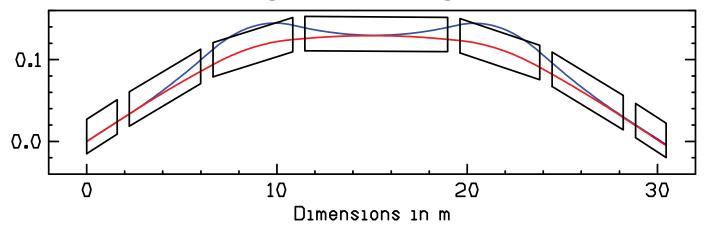
Energy delivered to beam

RF energy delivered to cavity


- Low efficiency, high RF power requirements
- Efficiency depends on product of
 - Fractional energy extraction per bunch (train)
 - Larger at higher frequency
 - Larger with higher charge
 - Number of turns (like hardware efficiency)
- Product ideally about 4 (≈24 turns at 1.3 GHz)

High Energy Acceleration RLA

- RLA most straightforward solution
- Limited number of passes
- Solutions to increase passes
 - Ramp linac magnets: stronger focusing, better matching
 - □ Use multiple FFAG arcs: > 1 pass per arc



High Energy Acceleration Fast Ramping Synchrotron

- High energy: more time (~1 ms) to ramp magnets and top off RF
- Keep average field high: mix
 - Fixed-field superconducting dipoles
 - □ Ramped (-1.8 T to +1.8 T) warm dipoles
- Closed orbit changes during acceleration

High Energy Acceleration Fast Ramping Synchrotron

- Lattice design need to be optimized
 - Time of flight constant (RF synchronization)
 - □ Tunes constant
 - Minimize orbit variation
 - Smaller aperture, smaller power supply
- Chromatic correction
- Determine best way to insert RF
 - □ More RF sections better
 - Higher synchrotron tune, collective instability suppression
 - □ RF/drift in each cell
 - Dispersion suppressed sections
 - Suppress orbit variation also

Collective Effects

- Beam loading w/ high current
 - $\square \approx 8.3\%$ energy extraction per pass for 1.3 GHz
- Large additional contribution from HOMs, etc.
- Small vacuum chamber in ramped magnets
- Mitigation
 - Lower frequency RF
 - Strong synchrotron oscillations
 - Distribute RF around ring: arc/ring act like mini-ring
 - Mode coupling viewpoint: higher v_s separates modes
 - Chromaticity
 - □ Few turns, growth tolerable?

Muon Collider Acceleration Intermediate-Energy Stages

- Start similar to neutrino factory
- Intermediate stages depend on high-energy choice
- Possible options
 - Non-scaling FFAGs
 - Work very well with smaller transverse emittance
 - Very efficient at high energy
 - Many turns possible
 - No synchrotron oscillations
 - Non-hybrid fast ramping synchrotron
 - RLA fallback solution

High Energy Acceleration R&D Goals

- Design lattice for highest energy stage
 - RLA solution (with and without ramping)
 - Fast ramping solution
- Understand limits/costs of ramping magnets and power supplies
- Add intermediate stages for these solutions
- Study high charge/impedance collective effects
- Compare performance/cost of solutions, choose initial configuration

Planning in First Years Simulations

- FY11 ν factory: Simulations, final details of initial configuration Lattices for μ collider high energy stages Basic collective effects studies
- FY12 Finalize μ collider high energy designs μ collider designs: all stages Single stage simulations with collective
- FY13 Full μ collider system simulations Choose μ collider initial configuration

Summary

- v factory design essentially settled
 - □ Need to know 200 MHz SCRF capabilities
 - Verify FFAG cost advantage
- $\circ \mu$ collider must select design
 - Highest energy: fast ramping synchrotron favored
 - Hardware and power efficiency
 - Collective effect stabilization
 - Verify ramping magnets feasible and cost effective
 - RLA should be a feasible fallback
 - And the more difficult to handle collective effects
 - Intermediate energy systems to be chosen
 - Depends partially on high energy system